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1 Overview

This lecture focuses on the analysis of a simple sublinear algorithm that tests for triangle-
freeness, a special case of subgraph-freeness testing (Lecture 6) in dense graphs. To anal-
yse the testing algorithm, we will introduce a deep graph-theoretic result, which is the
Szemeredi Regularity Lemma. The algorithm we see in this lecture can be generalized to
subgraph-freeness testing but its query complexity highly depends on whether the subgraph
is bipartite.

2 Problem Setup and Algorithm

Definition 8.1 A graph G = (V,E) is triangle-free if and only if no triplet forms a triangle,
i.e. {(u, v), (v, w), (w, u)} ∕⊆ E for all {u, v, w} ⊆ V .

Algorithm 8.2 Given a dense graph G = (V,E), repeat the following steps O
!

1
C(ε)

"
times

(C to be determined):

1. Pick {u, v, w} ⊆ V uniformly at random.

2. If u, v, w form a triangle, reject.

Otherwise accept.

Proposition 8.3 Algorithm 8.2 is complete. It accepts all triangle-free graphs. This is
trivial because there doesn’t exist any triangle in a triangle-free graph for step 2 to reject.

Theorem 8.4 Algorithm 8.2 is sound. If G is ε-far from triangle-freeness, then there exists
O(C(ε)n3) triplets that form triangles.

The contrapositive of Theorem 8.4 is known as the triangle removal lemma. The fact
that it has a name speaks volume. The rest of the lecture focuses on the proof of it.

3 Strategy and Motivation

We want to lower-bound the number of triangle-forming triplets in graphs ε-far from
triangle-freeness. The challenge mainly comes from the discrete nature of combinatorics.
It turns out that random behaviors in graphs are actually easier to analyze, such as in the
case of the Erdos-Renyi model.

SupposeX,Y, Z are disjoint sets of vertices and tripartite edges between sets are Bernoulli(η).
Each triplet of vertices (x, y, z) ∈ X × Y × Z form a triangle with probability η3, so the
expected number of triangles in X ∪ Y ∪ Z is just η3|X||Y ||Z|.

If we could partition the vertices to create random-like behavior analogous to the Erdos-
Renyi model, we might find a similar lower bound on the number of triangles.
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Here is the strategy:

1. Use the Szemeredi Regularity Lemma to partition the graph vertices into subsets,
where most of the pairs of subsets have edges between them that “look like” a random
bipartite graph. We will later define formally what it means to “look like” a random
bipartite graph, through the notion of a regular pair.

2. Use ε-farness to find a triplet of subsets that are densely connected in some sense.

3. Prove the Triangle Counting Lemma, which lower bounds the number of traingles in
the dense triplet.

4 Analysis

The Szemeredi Regularity Lemma requires the definition of edge density and γ-regularity.
For the following definitions, suppose A,B ⊆ V are disjoint vertex sets in graph G = (V,E).

Definition 8.5 The edge density of the pair (A,B) is defined as

d(A,B) =
|E(A,B)|
|A| · |B|

E(A,B) denotes the set of edges between A and B, i.e. {(u, v) ∈ E | u ∈ A, v ∈ B}.

Definition 8.6 The pair (A,B) is γ-regular if and only if

∀A′ ⊆ A and B′ ⊆ B s.t.
|A′|
|A| ! γ and

|B′|
|B| ! γ, |d(A,B)− d(A′, B′)| < γ

Remark 8.7 If a random Erdos-Renyi bipartite graph between vertex sets A and B have
Bernoulli(η) edges (η is a constant), then with high probability, the graph is γ-regular for
some constant γ only depending on η.

Lemma 8.8 (Szemeredi Regularity Lemma) There exists a function u : R2
+ → N with the

following property. For any l > 0, γ > 0, and graph G = (V,E) with |V | = n ! u(l, γ),
there exists an equipartition of V into V = {V1, ..., Vk} s.t. l " k " u and at most γ

#
k
2

$

pairs in V fail to be γ-regular.

This lemma has quite a few parameters. They each serves some purpose. A reasonably
small γ ensures behavior analogous to the Erdos-Renyi model. Conveniently, we get γ-
regularity for almost all pairs (Vi, Vj) in the partition V.

What is the point of the parameter ℓ then? An application of the lemma equipartitions
V into at least l different subsets. This turns out to have the effect of upper bounding the
number of edges found entirely within a subset, which are not part of the regular/“random-
like” behaviour of the graph. To see the upper bound, note that |Vi| " n

k , and so there

are at most n2

k2
edges with both endpoints in Vi. Hence the total number of edges that are

contained within any subset is upper bounded by n2

k " n2

l .
Also note that there’s a small caveat if we try to make l too big. Because |V| can be

up to u(l, γ), the vertex sets may become too small for the Erdos-Renyi-like bound (which
involves the product of the sizes of all these subsets) to be meaningful. Thankfully, |V| has
upper bound u(l, γ), which is constant in n.
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We won’t prove the Szemeredi Regularity Lemma in this course. We will however use it
to analyze Algorithm 8.2. The following lemma shows that, by the ε-farness of G from being
triangle-free, there must exists a triple of not-too-small subsets in G that have pairwise
not-too-small density. The consequence then, again, is that these three subsets behave
essentially like a random tripartite graph, and we can easily lower bound the number of
triangles in this triple (Lemma 8.10: Triangle Counting Lemma) to complete the analysis
for Algorithm 8.2.

Lemma 8.9 Suppose G = (V,E) is ε-far from triangle-freeness and |V | is sufficiently large.
Then there exists disjoint subsets V1, V2, V3 ⊆ V s.t.

1. ∀i ∈ {1, 2, 3},

|Vi| ∈ Ω

%
|V |
f(ε)

&
, where f(ε) = u

%
8

ε
,
ε

8

&

2. (V1, V2), (V2, V3), (V3, V1) are all ε
8 -regular pairs with density at least ε

2 .

Proof. Suppose G = (V,E) is ε-far from triangle-freeness and n = |V | is sufficiently large.
By applying the Szemeredi Regularity Lemma with l = 8

ε and γ = ε
8 , we can equipartition

V into V = {V1, V2, ..., Vk} with
ε

8
" k " u

%
8

ε
,
ε

8

&

such that at most ε
8

#
k
2

$
pairs in V aren’t ε

8 -regular. Because the size of each element in
V satisfies the first requirement in Lemma 8.9, we just need to find three elements of V
that satisfy the second requirement. To find them, it’s helpful to focus exclusively on edges
between ε

8 -regular pairs with density at least ε
2 , so we should try to exclude other edges:

• For each i ∈ [k], the number of edges with endpoints in Vi is upper bounded by

|Vi|2 "
%
n

k

&2

Hence the total number of edges with endpoints in the same partition has upper bound

n2

k
" εn2

8

• For each ε
8 -irregular pair Vi, Vj , the number of edges between them has upper bound

|Vi| · |Vj | "
%
n

k

&2

Hence the total number of edges between ε
8 -irregular pairs is upper bounded by

ε

8

%
k

2

&
n2

k2
" εn2

16

• For each sparse pair Vi, Vj , i.e. d(Vi, Vj) " ε
2 , the number of edges between them is

upper bounded by
ε

2
|Vi| · |Vj | "

ε

2

%
n

k

&2

Hence the total number of edges between sparse pairs is upper bounded by

ε

2

%
k

2

&
n2

k2
" εn2

4
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Except the three aforementioned types, (which account for no more than εn2

2 edges), all
other edges are between ε

8 -regular pairs of density at least ε
2 .

BecauseG is ε-far from triangle-freeness, we can still find a triangle-forming triplet {x, y, z} ⊆
V using only edges between ε

8 -regular pairs of density at least ε
2 .

Due to the removal of edges within a single subset in V, the subsets containing x, y, z are
distinct. Denote them X,Y, Z. The existence of triangle-forming triplet x, y, z guarantees
that X,Y, Z are pairwise nonempty in terms of remaining edges. Hence X,Y, Z must be
pairwise ε

8 -regular and
ε
2 -dense.

Lastly, we show the Triangle Counting Lemma, which lower-bounds the number of
triangle-forming triplets with a vertex in each special subset we just found with Lemma 8.9.
After all, establishing a lower bound on the number of triangle-forming triplets is our
ultimate goal.

Lemma 8.10 (Triangle Counting Lemma) Suppose X,Y, Z are disjoint vertex sets that
are pairwise γ-regular and at least 2γ-dense for some small γ. Then there are at least
Ω(γ3)|X||Y ||Z| many triplets (x, y, z) ∈ X × Y × Z that form triangles.

Remark 8.11 The lower bound on the number of triangle-forming triplets is the same up
to constant as what we expect for a random Erdos-Renyi tripartite graph with pairwise
density 2γ.

Proof of Lemma 8.10. Suppose X,Y, Z are disjoint vertex sets that are pairwise γ-regular
and 2γ-dense for some small γ.
Let XY = {x ∈ X : |N(x) ∩ Y | ! γ|Y |} and XZ = {x ∈ X : |N(x) ∩ Z| ! γ|Z|}.

Claim 8.12 |XY ∩XZ | ! (1− 2γ)|X|

Proof of Claim 8.12. By the definition of XY and XZ ,

d(X \XY , Y ) =
|E(X \XY , Y )|
(|X|− |XY |)|Y | " γ and similarly, d(X \XZ , Z) " γ

Because (X,Y ) and (X,Z) are 2γ-dense pairs, we have d(X,Y ) − d(X \ XY , Y ) ! γ and
d(X,Z)− d(X \XZ , Z) ! γ.
Because we can’t break the assumption that X,Y, Z are pairwise γ-regular, we must have
|X \XY |, |X \XZ | < γ|X|. Hence |XY |, |XZ | ! (1− γ)|X|, which by union bound implies
|XY ∩XZ | ! (1− 2γ)|X|.

Now fix an arbitrary x ∈ XY ∩ XZ . By the definition of N(x) ∩ Y and N(x) ∩ Z,
|N(x) ∩ Y | ! γ|Y | and |N(x) ∩ Z| ! γ|Z|.
Furthermore, by the γ-regularity of (Y, Z), |d(Y, Z)− d(N(x) ∩ Y,N(x) ∩ Z)| < γ.
Because d(Y, Z) ! 2γ, we must have d(N(x) ∩ Y,N(x) ∩ Z) ! γ which implies that there
are at least γ3|Y ||Z| edges between N(x) ∩ Y and N(x) ∩ Z.
Hence there are at least (1−2γ)γ3|X||Y ||Z| triangle-forming vertex triplets inX×Y ×Z.

Now we can actually prove the soundness of Algorithm 8.2.

Proof of Theorem 8.4. Suppose G = (V,E) with |V | = n is ε-far from triangle-freeness. By
Lemma 8.9 (shown using the Szemeredi Regularity Lemma,) there exist disjoint vertex sets
X,Y, Z ⊆ V s.t.
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1. |X|, |Y |, |Z| ∈ Ω( n
f(ε))

2. X,Y, Z are pairwise ε
8 -regular and

ε
2 -dense.

Now apply Lemma 8.10 with γ = ε
8 (noting that ε

2 > 2γ). We get that there are at least
Ω(ε3)|X||Y ||Z| triplets (x, y, z) ∈ X × Y × Z that form triangles. Hence the total number
of triangles in G is lower bounded by

Ω

'
ε3n3

u3
!
8
ε ,

ε
8

"
(

Therefore, we can run Algorithm 8.2 with O
!

1
ε3
u3(8ε ,

ε
8)
"
iterations to achieve soundness.

Remark 8.13 Although the query complexity is independent of n, u can be up to

22
. .

.
2

with Θ( 1
ε2
) 2s in this tower of exponentials. The humongous query complexity comes from

the application of the Szemeredi Regularity Lemma, and this bound is tight for the Regu-
larity Lemma [Fox and Lovasz 2017 https://arxiv.org/pdf/1606.01230.pdf].. Whether
efficiency can be improved through an analysis circumventing the Szemeredi Regularity
Lemma remains an open question. For one sided testers though, it has been shown that
the query complexity is at least

Ω

%
exp

%
polylog

%
1

ε

&&&

so there are no one-sided testers with polynomial query complexity.
Algorithm 8.2 can be extended to general subgraph-freeness testing, such as in [https:

//onlinelibrary.wiley.com/doi/pdf/10.1002/rsa.10056].
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